Lagrangian Coherent Structure Analysis of Terminal Winds Detected by Lidar. Part I: Turbulence Structures
نویسندگان
چکیده
The accurate real-time detection of turbulent airflow patterns near airports is important for safety and comfort in commercial aviation. In this paper, a method is developed to identify Lagrangian coherent structures (LCS) from horizontal lidar scans at Hong Kong International Airport (HKIA) in China. LCS are distinguished frame-independent material structures that create localized attraction, repulsion, or high shear of nearby trajectories in the flow. As such, they are the fundamental structures behind airflow patterns such as updrafts, downdrafts, and wind shear. Based on a recently developed finite-domain–finite-time Lyapunov exponent (FDFTLE) algorithm from Tang et al. and on new Lagrangian diagnostics presented in this paper that are pertinent to the extracted FDFTLE ridges, the authors differentiate LCS extracted from lidar data. It is found that these LCS derived from horizontal lidar scans compare well to convergence and divergence suggested by vertical slice scans. At HKIA, horizontal scans are predominant: they cover much bigger azimuthal ranges as compared with only two azimuthal angles from the vertical scans. LCS extracted from horizontal scans are thus advantageous in providing organizing turbulence structures over the entire observational domain as compared with a single line along the vertical scan direction. In Part II of this study, the authors will analyze the evolution of LCS and their impacts on landing aircraft based on recorded flight data.
منابع مشابه
Lagrangian Coherent Structure Analysis of Terminal Winds Detected by Lidar. Part II: Structure Evolution and Comparison with Flight Data
Using observational data from coherent Doppler light detection and ranging (lidar) systems situated at the Hong Kong International Airport (HKIA), the authors extract Lagrangian coherent structures (LCS) intersecting the flight path of landing aircraft. They study the time evolution of LCS and compare them with onboard wind shear and altitude data collected during airplane approaches. Their res...
متن کاملLagrangian coherent structures and mixing in two-dimensional turbulence
We introduce a Lagrangian definition for the boundaries of coherent structures in two-dimensional turbulence. The boundaries are defined as material lines that are linearly stable or unstable for longer times than any of their neighbors. Such material lines are responsible for stretching and folding in the mixing of passive tracers. We derive an analytic criterion that can be used to extract co...
متن کاملDetection of Coherent Structures in Photospheric Turbulent Flows
We study coherent structures in solar photospheric flows in a plage in the vicinity of the active region AR 10930 using the horizontal velocity data derived from Hinode/Solar Optical Telescope magnetograms. Eulerian and Lagrangian coherent structures (LCSs) are detected by computing the Q-criterion and the finite-time Lyapunov exponents of the velocity field, respectively. Our analysis indicate...
متن کاملLagrangian Coherent Structures near a Subtropical Jet Stream
Direct Lyapunov exponents and stability results are used to extract and distinguish Lagrangian coherent structures (LCS) from a three-dimensional atmospheric dataset generated from the Weather Research and Forecasting (WRF) model. The numerical model is centered at 19.788N, 155.558W, initialized from the Global Forecast System for the case of a subtropical jet stream near Hawaii on 12 December ...
متن کاملLagrangian Coherent Structures in a Nonlinear Dynamo
Turbulence and chaos play a fundamental role in stellar convective zones through the transport of particles, energy and momentum, and in fast dynamos, through the stretching, twisting and folding of magnetic flux tubes. A particularly revealing way to describe turbulent motions is through the analysis of Lagrangian coherent structures (LCS), which are material lines or surfaces that act as tran...
متن کامل